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Abstract 

This paper introduces a new polymorphous computing 
Fabric well suited to DSP and Image Processing and 
describes its implementation on a Configurable System on 
a Chip (CSOC). The architecture is highly parameterized 
and enables customization of the synthesized Fabric to 
achieve high performance for a specific class of applica- 
tion. For this reason it can be considered to be a generic 
model for  hardware accelerator synthesis from a high 
level specification. Another important innovation is the 
Fabric uses a global memory concept, which gives the 
host processor random access to all the variables and 
instructions on the Fabric. The Fabric supports different 
computing models including MIMD, SPMD and systolic 
flow and permits dynamic reconfiguration. We present a 
specific implementation of a bank of FIR filters on a Fab- 
ric composed of 52 cells on the Altera Excalibur ARM 
running at 33 MHz. The theoretical performance of this 
Fabric is 1.8 GMACh. For the FIR application we obtain 
I.6 GMACh real pegormance. Some automatic tools have 
been developed like the tool to provide a host access utility 
and assembler 

1. Introduction 

We have recently proposed a parametric cellular array 
architecture[ 181 with unique characteristics composed of 
regularly interconnected compute nodes accessible by the 
host processor. This paper is an extension of previous 
work and describes an enhanced version of this architec- 
ture that is more flexible, and thus more adaptable for a 
given class of applications. We give examples of some 
applications implemented on this innovative architecture 
showing outstanding performance. 

The high parametric nature, the modularity of this 

architecture, and the concept of global memory used for 
data and program access are principal novelties, which 
distinguish our Fabric from previous architectures [ 151, 

The recent development of the Altera Excalibur ARM 
Configurable System on a Chip (CSOC) has enabled us to 
build a system composed of a Polymorphous Fabric-based 
architecture and host ARM processor connected to the 
Fabric through the system bus. This system is character- 
ized by the high performance at a low clock frequency as 
shown in Section 6. 

Experience with the ARM CSOC[19] has shown how 
the data path architecture between the microprocessor and 
the Fabric is critical to performance. For this reason, in our 
design, each cell in the Fabric has a separate local data 
memory and local program memory. The collection of all 
the local memories constitute a global memory that is dual 
ported so that it is accessible by either the cell or the 
microprocessor. 

In Section 3 and 4 we describe our Polymorphous 
Computing Fabric and its implementation on the Altera 
Excalibur ARM CSOC. The remainder of the paper shows 
how a representative algorithm is mapped to the Fabric 
and gives Fabric-based performance. We end with conclu- 
sions and future work. 

[111, VI, [81, PI,  and PI .  

2. Related Work. 

In the past many different architectures were proposed 
introducing some important concepts such as: active mem- 
ory PAM[15] where the re-configurable system appears to 
be memory to the host processor but unlike standard mem- 
ory the data is processed between write and read opera- 
tions, bi-directional communication links Remarc project 
[ 113 improve utilization of limited resources, programma- 
ble datapath RaPid[7] composed of blocks optimized for 
large computation, configuration cache GARP[9] which 
accelerates the configuration process, runtime reconfigu- 



ration Chimera@] where the memory contains all the con- 
figurations so that speculative execution is possible, 
distributed control RAW [ 161 that permits MPMD calcula- 
tion, transparent runtime reconfiguration PACT[2] that 
utilizes a configuration controller and cache to apply the 
appropriate algorithms at precisely the right time. 

Our architecture combines these different concepts 
while introducing others like a flexible modular generic 
architecture concept and a global memory concept where 
the Fabric is built above a global memory. The advantages 
are: the specific architecture is better matched to a given 
class of algorithms, simultaneously optimizing resource 
usage, and the data and program communication bottle- 
neck is reduced by the fact that data are directly visible 
from separate cells. Run time communication between the 
cells is implemented by a bi-directional data network and 
by the host processor connected to the global memory run- 
ning in the background. 

3. Fabric Architecture 

Our basic Fabric architecture of a mesh-connected con- 
figurable network of runtime reconfigurable cells is visible 
to the processor as memory containing instructions and 
data so the host processor can write (read) data into (from) 
any cell’s local memory, allowing the host to both set and 
observe cell internal memory. 

Each cell has its own micro-controller. Thus control of 
the Fabric is distributed across all cells. Each cell is capa- 
ble of conditional execution, allowing local events to be 
propagated to other cells. 

Generic Fabric 

[+] 
Figure 1. The layout of the Fabric. 

This versatile computing Fabric supports a variety of 

computing and communications alternatives. Cells on the 
outer mesh border can broadcast to others on the border. 
Local nearest neighbor communications facilitates systolic 
computations. 

Since each cell has its own program memory and con- 
trol unit, MlMD computing is possible. If the same pro- 
gram is executed by all the cells, SPMD computing is 
accomplished. Moreover, systolic flow execution is possi- 
ble. In this model of execution, data flows to the function 
units from an interconnection network in addition to the 
traditional mode of fetching operands from memory to 
execute in the function units. 

For synchronization the host processor can broadcast a 
start or stop signal to the Fabric, and can observe any cell’s 
status bit. 

The layout of the Fabric and architecture of a cell is 
shown in Figure 1.  The cell is composed of the following 
modules: 

Communication and Access Control module 
One or more Dual port Data memories 
One Dual port Program memory 
Controller with Wait and Loop modules 

The cells are configured by parameters that are set prior 
to mesh generation and include: 

the size of the network 
the size of the communication busses 
the choice of functional unit for a given class of 
applications 
the number of local memories 
the type of access (random, sequential, circular) 
the instruction set layout 
communication direction 

Other parameters can be modified during Fabric execu- 

modification to the cell’s communication pattern dur- 

conditional execution 
conditional reconfiguration of the cell’s memory 

. 
tion. These include: 

ing application execution 

access patterns 

3.1. Communication and Access Control 

The communication module connects the cell to a data 
network and a condition network. 

It sends and receives data to the cell’s immediate 
neighbors in the mesh, including its diagonal neighbors, 
and to the local memories and local functional unit. It 
feeds the functional unit with data coming from different 
sources. This module is high parameterized. It is possible 
to synthesize only the needed communication interfaces 



and busses that optimize limited resource utilization. 
Figure2 depicts an example where an unused datapath 
(Bus "S" South Direction) to an adjacent cell is removed 
and a connection to a second local memory (Memory Bus 
2) is added. 

Memory with sequential 
or circular accers 

Cortnrmnication inside of the Fabric 

ing other aspects of the the Fabric. 

ferent function units, two are shown in Figure 3 and 4. 
In our experiments to date, we have designed many dif- 

Function 2 
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Tohnctional Unit 

Figure 2. Communication and Access Control 

3.2. Function Unit 

The function unit performs operations on two or more 
operands. 

'IbamnnlQhm . M l M e  

Figure 3. The layout of Function Unit 1. 

To Communication Module 

I 

Figure 4. The layout of Function Unit 2. 

Within Function Unit 1, Function 1 is optimized for a 
distance calculation, while Function 2 can do one of the 6 
operations. 

In Function 2, Function 1 performs a multiply, while 
Function 2 can do one of 5 operations. This Function unit 
is optimized for DSP intensive processing. It has 3 inputs, 
the sources of two inputs are determined by the Access 
Control module and the source of the third is local mem- 
ory. The local memories can be accessed using random, 
sequential or circular modes. The circular access mode is 
particularly good for a delay line implementation, sliding 
window, and repetitive coefficients access. 

3.3. Instruction Set and Controller 

The microcontroller executes instructions from the Pro- 
gram Memory. The instruction set consists of nine generic 
instructions where the instruction field depends on the spe- 
cific cell implementation. 

1. Conjigure. This instruction configures the Function 1 
unit into one of eight possible operation modes. It 
configures the condition unit into one of eight modes. 
It selects communications busses, direction of com- 
munication, access mode (random, sequential, or cir- 
cular) to local memories, and whether the function 
unit will operate in 8- or 16-bit mode. 

In this modular architecture, function units are designed 
for application classes and can be replaced without affect- 



2. Control. This instruction directs whether or not the 
function unit performs an accumulate; whether or not 
to perform a memory read or write access; controls 
which 8 bits of a 16 bit operand are to be accessed; 
and enables YO to/from pipelined communication 
busses according to the communication pattern estab- 
lished by the Configure instruction. The “wait count” 
field of the control instruction serves a variety of 
functions. It can be used for looping: if a loop count 
field is non-zero, the instruction repeats the operation 
(such as accumulation) for the specified number of 
cycles. It can also be used for time synchronization, 
so that the cell waits the specified number of cycles 
before continuing with the next instruction. 

3. Jump. This is the unconditional branch instruction to 
a 7-bit address. 

4. Conditional Jump. A jump is executed if the Condi- 
tion register is zero. 

5 .  Start Loop. This instruction marks the beginning of a 
loop body. A 7-bit loop count is included in the 
instruction. 

6. End Loop. This instruction marks the end of the loop 
body. If the loop count has reached zero, a branch is 
executed to the address supplied within the instruc- 
tion. The combination of Control with Start/End Loop 
provide for two levels of nested loop. This instruction 
can also reset memory address counters and enable or 
disable memory and accumulator operations. That 
reduces the number of instructions necessary for a 
loop body implementation, in many cases by two 
cycles. 

7. Stop then Waitfor Start. The purpose of this instruc- 
tion is to stop cell execution, setting the internal status 
bit to 1; and wait for the next start signal to arrive 
from the host processor. When the start signal is 
received, a branch is executed to the 7-bit address 
supplied within the instruction, and the status bit 
changes to 0. 

8. Reset. This instruction selectively resets the specified 
function unit internal registers and then waits a spec- 
ified number of cycles. As with the control instruc- 
tion, the reset can be used for both looping as well as 
synchronization. 

9. Load. Initialize the memory address counter and limit 
register for circular address generation. A combina- 
tion of Configure and Load instructions are used for 

- Random Memory Access. 

This instruction set exposes the microarchitecture of a 
Fabric cell, and gives the programmer control over all the 
communication busses, memory, and function units. It is 
possible with this architecture to communicate indepen- 
dently from computation. Thus, a cell can compute using 
local memory and at the same time forward data through 
the interconnection network. The data distribution pattern 
can be dynamically reconfigured without affecting the 
state of computation. In addition, the architecture provides 
an optimized loop control mechanism for up to two nested 
loops. If a higher level of loop nest is desired, the host 
processor must coordinate the outer loops using the Fabric 
start/stop mechanism. 

4. Excalibur ARM 

Hybrid Configurable System on a Chip (CSOC) archi- 
tectures have been proposed over the past several years 
([12], [9], [13]). Recently these devices have begun to 
appear as commercial offerings ([l], [17]). In contrast to 
traditional FF’GAs, these integrated systems offer a pro- 
cessor and an array of configurable logic cells on a single 
chip. We have implemented an instance of the general 
computing Fabric described above on the Altera Excalibur 
ARM hybrid system[l]. This chip contains an industry- 
standard ARM922T 32-bit RISC processor core operating 
at up to 200 MHz (equivalent to 210 Dhrystone MIPS), 
There is a memory management unit (MMU) included for 
real-time operating system support. This architecture 
builds upon features of the APEX TM 20KE PLD, with up 
to 1M gates. 

In our implementation, the Fabric is connected to the 
dual port memory (on one side) and accessible by the 
ARM processor (from the other side) instead of directly to 
the slave bus. We have recently shown [19] that this solu- 
tion is better because the AHB Master Port is about 10 
times slower than a dual port memory for communication. 

Our implementation uses 16-bit data paths,for commu- 
nication in a two-dimensional mesh of 52 processors. 

Fabrichost communication is handled by a controller 
that manages both direct memory access to a 32K-16bit 
dual port RAM and to a 32bit bridge to the AHB2 bus of 
the ARM. Via the bridge the host can command the con- 
troller to: 

Send the program to given cells of Fabric 
Send Data to given cells of Fabric 
Receive Data from the Fabric 



Send Reset 
Send Start Strobe 
Read Stop Signal 

The Fabric uses 8-bit data paths for communication and 
8-bit registers, with instruction set support for 16-bit func- 
tion unit operations. With manual placement (placement 
directives were generated by the script), 52 cells using 
Function Unit 1 were instantiated (13 rows x 4 columns) 
on the Excalibur ARM EPXAlOF1020C2. 

The clock frequency for Function Unit 1 and 2 is 33 
MHz, giving peak performance of 10.2 GigaOpsh and 1.8 
GMACIs. 

I 

Figure 5. Communication between Fabric and 
ARM Processor 

5. Example Application: FIR Filter Bank 

For this application we can implement 50 parallel fil- 
ters. R o  cells out of the 52 are used for storage of the data 
samples and to implement the delay line of all the filters. 
This delay line is implemented by using local memory 
with circular access. Each cell implements a FIR filter, 
executes all the processing, taking the coefficients from 
one of the local memories accessed in a circular way and 
storing the results to another memory using sequential 
access. Our implementation stores up to 256 samples and 
results and realizes 256 filter taps. Figure, 6 shows a C- 
program (left side) corresponding to the FIR Filter Bank 
application and its implementation on the Fabric (right 
side). 

For 256 samples and a bank of 10 six-tap FIR filters the 
Fabric is 71 times faster than the ARM processor running 

at 200 MHz. 

1.Q 
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Figure 6. FIR Filter Bank application 

6. Experimental results 

Many applications are successfully implemented on the 
Fabric. The table 1 shows only some of them. Each of 
these applications posed different properties and demand 
different hardware solutions. The first one, the K-means 
clustering algorithm needs a large granularity function unit 
for distance calculation and conditional dynamic configu- 
ration for index processing. A bank of FIR Filters needs a 
large granularity function unit using circular access to 
memory and broadcast data capability. An N-tap FIR Fil- 
ter application needs a small granularity function with 
multiple operands and a systolic flow execution mode. 
The vector by matrix calculation is a typical DSP applica- 
tion. It needs a large granularity function, systolic commu- 
nication mode and a direct processor access to a local 
memory. As shows Table 1 our Fabric gives very good 
performances for each of this applications. For example, 
for vector by matrix multiplication the performance [20] is 
better than PAC 128 recently built circuits. 

7. Conclusions 

We have described a computing Fabric consisting of a 
parameterized cellular array connected to a host processor. 
The parameterized nature of the architecture allows gener- 
ation of the Fabric for specific classes of applications. This 
approach is made possible by the modular architecture of 
the proposed Fabric. Another novel aspect of this Fabric is 



Application 

Bank of M, N-tap FIR 
filters and  samples I 

K-means Algorithm 
Clustering Algorithm 

11  NB-Samples = 128 
N = 6, M = 50 I I 1.2 GMACJs 

{ ( N t 2) * NB-Samples + 12) cycles for 
N<=256, M<=50 

Performance measured on 
cydes 
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Configuration 
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16 

Real performance 
at33MHz 

NB-pixels = 64, NBgands = 144, 
NB-Class = 8252 M(ABS and ACC)/s 
NBJixels = 64, NBgands = 144, 

NRClass = 24 756 M(ABS and ACCYs 

N-tap FIR Filter and 
NB-Samples 

VectorN * Matrixv, N] 

(NB-Samples + 4)  cycles for N-tap FIR 
filter, N e.50, NB-Samples e 256 

( N +7)  cycles forN e50 

6 

10 

I 

Table 1. Results 

NB-Samples=128, N = 50 
1.6 GMACJs 

N=50, 
1 A GMACJs 

the use of global memory. This memory gives the host 
processor random access to all variables and instructions 
on the Fabric's cells. The memory can b e  initialized in  the 
same way as a standard memory in a computer. Programs 
and data can be  dynamically loaded during processing on 
the Fabric because the global memory is dual ported. This 
reduces overhead for  preparing the data and programs. 
The Fabric can reconfigure itself during processing using 
data generated during Fabric execution. Two Fabric 
instances using different function units (Section 3.2) have 
been synthesized on the Excalibur ARM. Each can hold up 
to 52 cells. The Fabric runs at 33 MHz,  giving peak per- 
formance of 10.2 GigaOpsIs and 1.8 GigaMACsIs. The  
presented work is  an intermediate step in automatic gener- 
ation of hardware accelerators from high-level specifica- 
tion. We are working on an abstract model describing a 
polymorphous Fabric and on the automatic generation of a 
Fabric instantiation and the configuration programs for  a 
specific application. 
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